Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 21(1): 265, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563614

RESUMO

BACKGROUND: Emerging ferroptosis-driven therapies based on nanotechnology function either by increasing intracellular iron level or suppressing glutathione peroxidase 4 (GPX4) activity. Nevertheless, the therapeutic strategy of simultaneous iron delivery and GPX4 inhibition remains challenging and has significant scope for improvement. Moreover, current nanomedicine studies mainly use disulfide-thiol exchange to deplete glutathione (GSH) for GPX4 inactivation, which is unsatisfactory because of the compensatory effect of continuous GSH synthesis. METHODS: In this study, we design a two-in-one ferroptosis-inducing nanoplatform using iron-based metal-organic framework (MOF) that combines iron supply and GPX4 deactivation by loading the small molecule buthionine sulfoxide amine (BSO) to block de novo GSH biosynthesis, which can achieve sustainable GSH elimination and dual ferroptosis amplification. A coated lipid bilayer (L) can increase the stability of the nanoparticles and a modified tumor-homing peptide comprising arginine-glycine-aspartic acid (RGD/R) can achieve tumor-specific therapies. Moreover, as a decrease in GSH can alleviate resistance of cancer cells to chemotherapy drugs, oxaliplatin (OXA) was also loaded to obtain BSO&OXA@MOF-LR for enhanced cancer chemo-ferrotherapy in vivo. RESULTS: BSO&OXA@MOF-LR shows a robust tumor suppression effect and significantly improved the survival rate in 4T1 tumor xenograft mice, indicating a combined effect of dual amplified ferroptosis and GSH elimination sensitized apoptosis. CONCLUSION: BSO&OXA@MOF-LR is proven to be an efficient ferroptosis/apoptosis hybrid anti-cancer agent. This study is of great significance for the clinical development of novel drugs based on ferroptosis and apoptosis for enhanced cancer chemo-ferrotherapy.


Assuntos
Estruturas Metalorgânicas , Neoplasias , Humanos , Camundongos , Animais , Butionina Sulfoximina/farmacologia , Oxaliplatina/farmacologia , Glutationa
2.
Adv Healthc Mater ; 12(18): e2203356, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36929306

RESUMO

The majority of cancer patients die of metastasis rather than primary tumors, and most patients may have already completed the cryptic metastatic process at the time of diagnosis, making them intractable for therapeutic intervention. The urokinase-type plasminogen activator (uPA) system is proved to drive cancer metastasis. However, current blocking agents such as uPA inhibitors or antibodies are far from satisfactory due to poor pharmacokinetics and especially have to face multiplex mechanisms of metastasis. Herein, an effective strategy is proposed to develop a uPA-scavenger macrophage (uPAR-MΦ), followed by loading chemotherapeutics with nanoparticles (GEM@PLGA) to confront cancer metastasis. Interestingly, significant elimination of uPA by uPAR-MΦ is demonstrated by transwell analysis on tumor cells in vitro and enzyme-linked immunosorbent assay detection in peripheral blood of mice with metastatic tumors, contributing to significant inhibition of migration of tumor cells and occurrence of metastatic tumor lesions in mice. Moreover, uPAR-MΦ loaded with GEM@PLGA shows a robust antimetastasis effect and significantly prolonged survival in 4T1-tumor-bearing mice models. This work provides a novel living drug platform for realizing a potent treatment strategy to patients suffering from cancer metastasis, which can be further expanded to handle other tumor metastasis markers mediating cancer metastasis.


Assuntos
Caproatos , Macrófagos , Metástase Neoplásica , Ativador de Plasminogênio Tipo Uroquinase , Metástase Neoplásica/tratamento farmacológico , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Caproatos/farmacologia , Animais , Camundongos , Nanopartículas , Neoplasias Experimentais , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C , Feminino
3.
Mol Pharm ; 20(5): 2362-2375, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36989419

RESUMO

Efficient drug delivery to solid tumors remains a challenge. HER2-positive (HER2+) tumors are an aggressive cancer subtype with a resistance to therapy, high risk of relapse, and poor prognosis. Although nanomedicine technology shows obvious advantages in tumor treatment, its potential clinical translation is still impeded by the unsatisfactory delivery and therapeutic efficacy. In this study, a gene reprogramming macrophage membrane-encapsulated drug-loading nanoplatform was developed for HER2+ cancer therapy based on the co-assembly of poly (lactic-co-glycolic acid) (PLGA) nanoparticles and engineered modified macrophage membranes. In this nanoplatform, near-infrared (NIR) fluorescent dye ICG or chemotherapeutic drug doxorubicin (DOX) was loaded into the PLGA cores, and an anti-HER2 affibody was stably expressed on the membrane of macrophages. In comparison to the nanoparticles with conventional macrophage membrane coating, the ICG/DOX@AMNP nanoparticles armed with anti-HER2 affibody showed excellent HER2-targeting ability both in vitro and in vivo. Small animal imaging studies confirmed the improved pharmacokinetics of drug delivery and specific distribution of the ICG/DOX@AMNPs in HER2+ tumors. Mechanistically, compared with DOX@NPs or DOX@MNPs nanoparticles, DOX@AMNPs exhibited synergistic inhibition of HER2+ cancer cells or mice tumor growth by inducing apoptosis and blocking the PI3K/AKT signaling pathway. Altogether, this study proposes a promising biomimetic nanoplatform for the efficient targeted delivery of chemotherapeutic agents to HER2+ tumors, demonstrating its great potential for solid tumor therapy.


Assuntos
Biônica , Nanopartículas , Animais , Camundongos , Fosfatidilinositol 3-Quinases , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos/métodos , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Macrófagos , Liberação Controlada de Fármacos
4.
Theranostics ; 12(9): 4310-4329, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35673561

RESUMO

Pyroptosis is a lytic and inflammatory type of programmed cell death that is usually triggered by inflammasomes and executed by gasdermin proteins. The main characteristics of pyroptosis are cell swelling, membrane perforation, and the release of cell contents. In normal physiology, pyroptosis plays a critical role in host defense against pathogen infection. However, excessive pyroptosis may cause immoderate and continuous inflammatory responses that involves in the occurrence of inflammatory diseases. Attractively, as immunogenic cell death, pyroptosis can serve as a new strategy for cancer elimination by inducing pyroptotic cell death and activating intensely antitumor immunity. To make good use of this double-edged sword, the molecular mechanisms, and therapeutic implications of pyroptosis in related diseases need to be fully elucidated. In this review, we first systematically summarize the signaling pathways of pyroptosis and then present the available evidences indicating the role of pyroptosis in inflammatory diseases and cancer. Based on this, we focus on the recent progress in strategies that inhibit pyroptosis for treatment of inflammatory diseases, and those that induce pyroptosis for cancer therapy. Overall, this should shed light on future directions and provide novel ideas for using pyroptosis as a powerful tool to fight inflammatory diseases and cancer.


Assuntos
Neoplasias , Piroptose , Humanos , Inflamassomos/metabolismo , Piroptose/fisiologia , Transdução de Sinais
5.
Cell Death Dis ; 12(3): 225, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33649354

RESUMO

Conversion of astrocytes into neurons in vivo offers an alternative therapeutic approach for neuronal loss after injury or disease. However, not only the efficiency of the conversion of astrocytes into functional neurons by single Neurog2, but also the conundrum that whether Neurog2-induced neuronal cells (Neurog2-iNs) are further functionally integrated into existing matured neural circuits remains unknown. Here, we adopted the AAV(2/8) delivery system to overexpress single factor Neurog2 into astrocytes and found that the majority of astrocytes were successfully converted into neuronal cells in multiple brain regions, including the midbrain and spinal cord. In the midbrain, Neurog2-induced neuronal cells (Neurog2-iNs) exhibit neuronal morphology, mature electrophysiological properties, glutamatergic identity (about 60%), and synapse-like configuration local circuits. In the spinal cord, astrocytes from both the intact and lesioned sources could be converted into functional neurons with ectopic expression of Neurog2 alone. Notably, further evidence from our study also proves that Neurog2-iNs in the intact spinal cord are capable of responding to diverse afferent inputs from dorsal root ganglion (DRG). Together, this study does not merely demonstrate the feasibility of Neurog2 for efficient in vivo reprogramming, it gives an indication for the Neurog2-iNs as a functional and potential factor in cell-replacement therapy.


Assuntos
Astrócitos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Transdiferenciação Celular , Mesencéfalo/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurogênese , Neurônios/metabolismo , Medula Espinal/metabolismo , Animais , Astrócitos/ultraestrutura , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Células Cultivadas , Dependovirus/genética , Técnicas de Transferência de Genes , Vetores Genéticos , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Mesencéfalo/ultraestrutura , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Neurônios/ultraestrutura , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Fenótipo , Medula Espinal/ultraestrutura , Proteína Vesicular 2 de Transporte de Glutamato/genética , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
6.
Stem Cell Reports ; 16(3): 534-547, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33577795

RESUMO

Direct neuronal reprogramming potentially provides valuable sources for cell-based therapies. Proneural gene Ascl1 converts astrocytes into induced neuronal (iN) cells efficiently both in vitro and in vivo. However, the underlying mechanisms are largely unknown. By combining RNA sequencing and chromatin immunoprecipitation followed by high-throughput sequencing, we found that the expression of 1,501 genes was markedly changed during the early stages of Ascl1-induced astrocyte-to-neuron conversion and that the regulatory regions of 107 differentially expressed genes were directly bound by ASCL1. Among Ascl1's direct targets, Klf10 regulates the neuritogenesis of iN cells at the early stage, Myt1 and Myt1l are critical for the electrophysiological maturation of iN cells, and Neurod4 and Chd7 are required for the efficient conversion of astrocytes into neurons. Together, this study provides more insights into understanding the molecular mechanisms underlying Ascl1-mediated astrocyte-to-neuron conversion and will be of value for the application of direct neuronal reprogramming.


Assuntos
Astrócitos/fisiologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição de Resposta de Crescimento Precoce/metabolismo , Regulação da Expressão Gênica , Fatores de Transcrição Kruppel-Like/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/fisiologia , Fatores de Transcrição/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Reprogramação Celular , Sequenciamento de Cromatina por Imunoprecipitação , Proteínas de Ligação a DNA/genética , Fatores de Transcrição de Resposta de Crescimento Precoce/genética , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Fatores de Transcrição Kruppel-Like/genética , Camundongos , Proteínas do Tecido Nervoso/genética , Análise de Sequência de RNA , Fatores de Transcrição/genética , Transcriptoma
7.
Cell Rep ; 28(3): 682-697.e7, 2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31315047

RESUMO

Dysfunction of noradrenergic (NA) neurons is associated with a number of neuronal disorders. Diverse neuronal subtypes can be generated by direct reprogramming. However, it is still unknown how to convert non-neuronal cells into NA neurons. Here, we show that seven transcription factors (TFs) (Ascl1, Phox2b, AP-2α, Gata3, Hand2, Nurr1, and Phox2a) are able to convert astrocytes and fibroblasts into induced NA (iNA) neurons. These iNA neurons express the genes required for the biosynthesis, release, and re-uptake of noradrenaline. Moreover, iNA neurons fire action potentials, receive synaptic inputs, and control the beating rate of co-cultured ventricular myocytes. Furthermore, iNA neurons survive and integrate into neural circuits after transplantation. Last, human fibroblasts can be converted into functional iNA neurons as well. Together, iNA neurons are generated by direct reprogramming, and they could be potentially useful for disease modeling and cell-based therapies.


Assuntos
Neurônios Adrenérgicos/citologia , Neurônios Adrenérgicos/metabolismo , Astrócitos/citologia , Reprogramação Celular/genética , Fibroblastos/citologia , Potenciais de Ação/fisiologia , Neurônios Adrenérgicos/ultraestrutura , Animais , Astrócitos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Linhagem Celular , Transplante de Células , Fibroblastos/metabolismo , Fator de Transcrição GATA3/genética , Fator de Transcrição GATA3/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Células Musculares/metabolismo , Vias Neurais/metabolismo , Vias Neurais/fisiologia , Norepinefrina/biossíntese , Norepinefrina/metabolismo , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Sinapses/metabolismo , Sinapses/ultraestrutura , Fator de Transcrição AP-2/genética , Fator de Transcrição AP-2/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma/genética
8.
Nat Neurosci ; 21(3): 440-446, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29335603

RESUMO

Despite rapid progresses in the genome-editing field, in vivo simultaneous overexpression of multiple genes remains challenging. We generated a transgenic mouse using an improved dCas9 system that enables simultaneous and precise in vivo transcriptional activation of multiple genes and long noncoding RNAs in the nervous system. As proof of concept, we were able to use targeted activation of endogenous neurogenic genes in these transgenic mice to directly and efficiently convert astrocytes into functional neurons in vivo. This system provides a flexible and rapid screening platform for studying complex gene networks and gain-of-function phenotypes in the mammalian brain.


Assuntos
Química Encefálica/genética , Sistemas CRISPR-Cas/genética , Ativação Transcricional/genética , Animais , Astrócitos/fisiologia , Proteínas de Ligação a DNA , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Sistema Nervoso/metabolismo , Neurônios/fisiologia , Proteínas Nucleares/metabolismo , Cultura Primária de Células , RNA Longo não Codificante/genética
9.
J Neurosci ; 35(25): 9336-55, 2015 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-26109658

RESUMO

In vivo induction of non-neuronal cells into neurons by transcription factors offers potential therapeutic approaches for neural regeneration. Although generation of induced neuronal (iN) cells in vitro and in vivo has been reported, whether iN cells can be fully integrated into existing circuits remains unclear. Here we show that expression of achaete-scute complex homolog-like 1 (Ascl1) alone is sufficient to convert dorsal midbrain astrocytes of mice into functional iN cells in vitro and in vivo. Specific expression of Ascl1 in astrocytes by infection with GFAP-adeno-associated virus (AAV) vector converts astrocytes in dorsal midbrain, striatum, and somatosensory cortex of postnatal and adult mice into functional neurons in vivo. These iN cells mature progressively, exhibiting neuronal morphology and markers, action potentials, and synaptic inputs from and output to existing neurons. Thus, a single transcription factor, Ascl1, is sufficient to convert brain astrocytes into functional neurons, and GFAP-AAV is an efficient vector for generating iN cells from astrocytes in vivo.


Assuntos
Astrócitos/citologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Transdiferenciação Celular/fisiologia , Técnicas de Transferência de Genes , Mesencéfalo/metabolismo , Neurônios/citologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Células Cultivadas , Dependovirus , Citometria de Fluxo , Vetores Genéticos , Imuno-Histoquímica , Mesencéfalo/citologia , Camundongos , Camundongos Mutantes , Técnicas de Cultura de Órgãos , Técnicas de Patch-Clamp , Reação em Cadeia da Polimerase em Tempo Real , Transdução Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...